SRINIVASA RAMANUJAN


Srinivasa Ramanujan born Srinivasa Ramanujan Aiyangar, 22 December 1887 – 26 April 1920 was an Indian mathematician who lived during the British Rule in India. Though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then considered unsolvable. Ramanujan initially developed his own mathematical research in isolation: according to Hans Eysenck: "He tried to interest the leading professional mathematicians in his work, but failed for the most part. What he had to show them was too novel, too unfamiliar, and additionally presented in unusual ways; they could not be bothered".Seeking mathematicians who could better understand his work, in 1913 he began a postal partnership with the English mathematician G. H. Hardy at the University of Cambridge, England. Recognizing Ramanujan's work as extraordinary, Hardy arranged for him to travel to Cambridge. In his notes, Hardy commented that Ramanujan had produced groundbreaking new theorems, including some that "defeated me completely; I had never seen anything in the least like them before", and some recently proven but highly advanced results.

During his short life, Ramanujan independently compiled nearly 3,900 results (mostly identities and equations). Many were completely novel; his original and highly unconventional results, such as the Ramanujan prime, the Ramanujan theta function, partition formulae and mock theta functions, have opened entire new areas of work and inspired a vast amount of further research. Nearly all his claims have now been proven correct. The Ramanujan Journal, a scientific journal, was established to publish work in all areas of mathematics influenced by Ramanujan, and his notebooks—containing summaries of his published and unpublished results—have been analysed and studied for decades since his death as a source of new mathematical ideas.



  • Mathematical achievements

    In mathematics there is a distinction between insight and formulating or working through a proof. Ramanujan proposed an abundance of formulae that could be investigated later in depth. G. H. Hardy said that Ramanujan's discoveries are unusually rich and that there is often more to them than initially meets the eye. As a byproduct of his work, new directions of research were opened up. Examples of the most intriguing of these formulae include infinite series for π, one of which is given below:

    This result is based on the negative fundamental discriminant d = −4 × 58 = −232 with class number h(d) = 2. Further, 26390 = 5 × 7 × 13 × 58 and 16 × 9801 = 3962, which is related to the fact that

    This might be compared to Heegner numbers, which have class number 1 and yield similar formulae.

    Ramanujan's series for π converges extraordinarily rapidly and forms the basis of some of the fastest algorithms currently used to calculate π. Truncating the sum to the first term also gives the approximation 98012/4412 for π, which is correct to six decimal places; truncating it to the first two terms gives a value correct to 14 decimal places. See also the more general Ramanujan–Sato series.

    One of Ramanujan's remarkable capabilities was the rapid solution of problems, illustrated by the following anecdote about an incident in which P. C. Mahalanobis posed a problem:

    Imagine that you are on a street with houses marked 1 through n. There is a house in between (x) such that the sum of the house numbers to the left of it equals the sum of the house numbers to its right. If n is between 50 and 500, what are n and x?' This is a bivariate problem with multiple solutions. Ramanujan thought about it and gave the answer with a twist: He gave a continued fraction. The unusual part was that it was the solution to the whole class of problems. Mahalanobis was astounded and asked how he did it. 'It is simple. The minute I heard the problem, I knew that the answer was a continued fraction. Which continued fraction, I asked myself. Then the answer came to my mind', Ramanujan replied."

    His intuition also led him to derive some previously unknown identities, such as

    for all θ such that  and , where Γ(z) is the gamma function, and related to a special value of the Dedekind eta function. Expanding into series of powers and equating coefficients of θ0θ4, and θ8 gives some deep identities for the hyperbolic secant.

    In 1918 Hardy and Ramanujan studied the partition function P(n) extensively. They gave a non-convergent asymptotic series that permits exact computation of the number of partitions of an integer. In 1937 Hans Rademacher refined their formula to find an exact convergent series solution to this problem. Ramanujan and Hardy's work in this area gave rise to a powerful new method for finding asymptotic formulae called the circle method.

    In the last year of his life, Ramanujan discovered mock theta functions.For many years these functions were a mystery, but they are now known to be the holomorphic parts of harmonic weak Maass forms.

    The Ramanujan conjecture

    Although there are numerous statements that could have borne the name Ramanujan conjecture, one was highly influential on later work. In particular, the connection of this conjecture with conjectures of André Weil in algebraic geometry opened up new areas of research. That Ramanujan conjecture is an assertion on the size of the tau-function, which has as generating function the discriminant modular form Δ(q), a typical cusp form in the theory of modular forms. It was finally proven in 1973, as a consequence of Pierre Deligne's proof of the Weil conjectures. The reduction step involved is complicated. Deligne won a Fields Medal in 1978 for that work.

    In his paper "On certain arithmetical functions", Ramanujan defined the so-called delta-function, whose coefficients are called τ(n) (the Ramanujan tau function). He proved many congruences for these numbers, such as τ(p) ≡ 1 + p11 mod 691 for primes p. This congruence (and others like it that Ramanujan proved) inspired Jean-Pierre Serre (1954 Fields Medalist) to conjecture that there is a theory of Galois representations that "explains" these congruences and more generally all modular forms. Δ(z) is the first example of a modular form to be studied in this way. Deligne (in his Fields Medal-winning work) proved Serre's conjecture. The proof of Fermat's Last Theorem proceeds by first reinterpreting elliptic curves and modular forms in terms of these Galois representations. Without this theory there would be no proof of Fermat's Last Theorem.






    Ramanujan's notebooks

    While still in Madras, Ramanujan recorded the bulk of his results in four notebooks of looseleaf paper. They were mostly written up without any derivations. This is probably the origin of the misapprehension that Ramanujan was unable to prove his results and simply thought up the final result directly. Mathematician Bruce C. Berndt, in his review of these notebooks and Ramanujan's work, says that Ramanujan most certainly was able to prove most of his results, but chose not to.

    This may have been for any number of reasons. Since paper was very expensive, Ramanujan would do most of his work and perhaps his proofs on slate, and then transfer just the results to paper. Using a slate was common for mathematics students in the Madras Presidency at the time. He was also quite likely to have been influenced by the style of G. S. Carr's book, which stated results without proofs. Finally, it is possible that Ramanujan considered his work to be for his personal interest alone and therefore recorded only the results.

    The first notebook has 351 pages with 16 somewhat organised chapters and some unorganised material. The second has 256 pages in 21 chapters and 100 unorganised pages, and the third 33 unorganised pages. The results in his notebooks inspired numerous papers by later mathematicians trying to prove what he had found. Hardy himself wrote papers exploring material from Ramanujan's work, as did G. N. Watson, B. M. Wilson, and Bruce Berndt.In 1976, George Andrews rediscovered a fourth notebook with 87 unorganised pages, the so-called "lost notebook".

Comments

Popular posts from this blog

INDIAN MATHEMATICIANS

Componendo Dividendo