Posts

Showing posts from April, 2021

FUNDAMENTAL THEOREM OF ARITHEMATIC

Image
 FUNDAMENTAL THEOREM OF ARITHEMATIC  Every composite number can be expressed (factorised) as a product of primes, and this factorisation is unique apart from the order in which the prime factors occur.

EUCLID'S DIVISION LEMMA AND ALGORITHM

Image
EUCLID'S DIVISION  LEMMA  AND  ALGORITHM A  lemma  is a proven statement used for proving another statement. An algorithm is a series of well defined steps which gives a procedure for solving a type of problem. EUCLID'S DIVISION LEMMA - Given positive integers a and b there exist unique integers q and r satisfying a=bq+r ,  0≤r<b EUCLID'S DIVISION ALGORITM is a technique to compute HIGHEST COMMON FACTOR (HCF) of two positive integers. Let us take an example of euclid algorithm: Take two numbers 455 and 42                455 > 42  so, take the greater no. and apply euclid lemma                 455=42 × 10 + 35 here we have Q=42,divisor=10 and remainder=35 Do these steps till the remainder become O                      42= 35 × 1 +7                     ...

TRIGONOMETRY IDENTITIES

Image
 TRIGONOMETRY IDENTITIES Calculation of trigonometric ratios for specific angles establish some identities are called Trigonometry identities. Or   can be say that an equation involving trigonometric ratios of an angle is called a trigonometry identity . SIN A = 1/COSEC A COS A = 1/SEC A TAN A = 1/COT A    OR      SIN A / COS A  COT A = 1/TAN A    OR      COS A / SIN A SEC A = 1/COS A  COSEC A = 1/SIN A COS 2  A+ SIN 2 A   = 1 OR SIN ²A + COS²A =1 SEC 2 A  - TAN 2 A   = 1  OR    1+ TAN 2 A   = SEC 2  A   1+COT 2  A= COSEC 2  AOR COSEC 2 A-COT 2  A=1 ADDITION AND SUBTRACTION Ø   SIN (A+B) = SINACOSB +COSASINB Ø   SIN (A-B) = SINACOSB – COSASINB Ø   COS (A+B) = COSACOSB – SINASINB Ø   COS (A-B) = COSACOSB + SINASINB Ø   TAN (A+B) =TANA + TANB/1-TANATANB Ø   TAN (A-B) = TANA-TANB/1 +TANATANB Ø   COT (A-...